Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 111(4): e16311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571288

RESUMO

PREMISE: Previous work searching for sexual dimorphism has largely relied on the comparison of trait mean vectors between sexes in dioecious plants. Whether trait scaling (i.e., the ratio of proportional changes in covarying traits) differs between sexes, along with its functional significance, remains unclear. METHODS: We measured 10 vegetative traits pertaining to carbon, water, and nutrient economics across 337 individuals (157 males and 180 females) of the diocious species Eurya japonica during the fruiting season in eastern China. Piecewise structural equation modeling was employed to reveal the scaling relationships of multiple interacting traits, and multivariate analysis of (co)variance was conducted to test for intersexual differences. RESULTS: There was no sexual dimorphism in terms of trait mean vectors across the 10 vegetative traits in E. japonica. Moreover, most relationships for covarying trait pairs (17 out of 19) exhibited common scaling slopes between sexes. However, the scaling slopes for leaf phosphorus (P) vs. nitrogen (N) differed between sexes, with 5.6- and 3.0-fold increases of P coinciding with a 10-fold increase of N in male and female plants, respectively. CONCLUSIONS: The lower ratio of proportional changes in P vs. N for females likely reflects stronger P limitation for their vegetative growth, as they require greater P investments in fruiting. Therefore, P vs. N scaling can be a key avenue allowing for sex-specific strategic optimization under unequal reproductive requirements. This study uncovers a hidden aspect of secondary sex character in dioecious plants, and highlights the use of trait scaling to understand sex-defined economic strategies.


Assuntos
Nitrogênio , Fósforo , Folhas de Planta , Reprodução , Fósforo/metabolismo , Fósforo/análise , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , China , Cyperaceae/fisiologia , Cyperaceae/crescimento & desenvolvimento
2.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453933

RESUMO

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Assuntos
Biodiversidade , Ecossistema , Plantas , Biomassa , Florestas , Pradaria
3.
Environ Int ; 185: 108515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394914

RESUMO

Hexavalent chromium [Cr (VI)] is an important environmental pollutant and may cause lung injury when inhaled into the human body. Cr (VI) is genotoxic and can cause DNA damage, although the underlying epigenetic mechanisms remain unclear. To simulate the real-life workplace exposure to Cr (VI), we used a novel exposure dose calculation method. We evaluated the effect of Cr (VI) on DNA damage in human bronchial epithelial cells (16HBE and BEAS-2B) by calculating the equivalent real-time exposure dose of Cr (VI) (0 to 10 µM) in an environmental population. Comet experiments and olive tail moment measurements revealed increased DNA damage in cells exposed to Cr (VI). Cr (VI) treatment increased nuclear γ-H2AX foci and γ-H2AX protein expression, and caused DNA damage in the lung tissues of mice. An effective Cr (VI) dose (6 µM) was determined and used for cell treatment. Cr (VI) exposure upregulated circ_0008657, and knockdown of circ_0008657 decreased Cr (VI)-induced DNA damage, whereas circ_0008657 overexpression had the opposite effect. Mechanistically, we found that circ_0008657 binds to microRNA (miR)-203a-3p and subsequently regulates ATM serine/threonine kinase (ATM), a key protein involved in homologous recombination repair downstream of miR-203a-3p, thereby regulating DNA damage induced by Cr (VI). The present findings suggest that circ_0008657 competitively binds to miR-203a-3p to activate the ATM pathway and regulate the DNA damage response after environmental chemical exposure in vivo and in vitro.


Assuntos
Cromo , MicroRNAs , Humanos , Animais , Camundongos , Cromo/toxicidade , Dano ao DNA , Pulmão , MicroRNAs/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
Environ Pollut ; 346: 123562, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365078

RESUMO

Carbon black and cadmium (Cd) are important components of atmospheric particulate matter and cigarette smoke that are closely associated with the occurrence and development of lung diseases. Carbon black, particularly carbon black nanoparticles (CBNPs), can easily adsorbs metals and cause severe lung damage and even cell death. Therefore, this study aimed to explore the mechanisms underlying the combined toxicity of CBNPs and Cd. We found that the combined exposure to CBNPs and Cd promoted significantly greater autophagosome formation and ferroptosis (increased malonaldehyde (MDA), reactive oxygen species (ROS), and divalent iron ions (Fe2+) levels and altered ferroptosis-related proteins) compared with single exposure in both 16HBE cells (human bronchial epithelioid cells) and mouse lung tissues. The levels of ferroptosis proteins, transferrin receptor protein 1 (TFRC) and glutathione peroxidase 4 (GPX4), were restored by CBNPs-Cd exposure following treatment with a 3-MA inhibitor. Additionally, under CBNPs-Cd exposure, circPSEN1 overexpression inhibited increases in the autophagy proteins microtubule-associated protein 1 light chain 3 (LC3II/I) and sequestosome-1 (P62). Moreover, increases in TFRC and Fe2+, and decreases in GPX4were inhibited. Knockdown of circPSEN1 reversed these effects. circPSEN1 interacts with autophagy-related gene 5 (ATG5) protein and upregulates nuclear receptor coactivator 4 (NCOA4), the co-interacting protein of ATG5, thereby degrading ferritin heavy chain 1 (FTH1) and increasing Fe2+ in 16HBE cells. These results indicated that the combined exposure to CBNPs and Cd promoted the binding of circPSEN1 to ATG5, thereby increasing autophagosome synthesis and ATG5-NCOA4-FTH1 axis activation, ultimately inducing autophagy-dependent ferroptosis in 16HBE cells and mouse lung tissues. This study provides novel insights into the toxic effects of CBNPs and Cd in mixed pollutants.


Assuntos
Cádmio , Ferroptose , Humanos , Camundongos , Animais , Cádmio/toxicidade , Fuligem/toxicidade , Autofagia , Células Epiteliais
5.
Biometals ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277035

RESUMO

Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.

6.
Environ Res ; 242: 117733, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000634

RESUMO

Carbon black nanoparticles (CBNPs) and cadmium (Cd) are major components of various air pollutants and cigarette smoke. Autophagy and inflammation both play critical roles in understanding the toxicity of particles and their components, as well as maintaining body homeostasis. However, the effects and mechanisms of CBNPs and Cd (CBNPs-Cd) co-exposure on the human respiratory system remain unclear. In this study, a CBNPs-Cd exposure model was constructed to explore the respiratory toxicity and combined mechanism of these chemicals on the autophagy-lysosome pathway in the context of respiratory inflammation. Co-exposure of CBNPs and Cd significantly increased the number of autophagosomes and lysosomes in human bronchial epithelial cells (16HBE) and mouse lung tissues compared to the control group, as well as the groups exposed to CBNPs and Cd alone. Autophagic markers, LC3II and P62 proteins, were up-regulated in 16HBE cells and mouse lung tissues after CBNPs-Cd co-exposure. However, treatment with Cq inhibitor (an indicator of lysosomal acid environment) resulted in a substantial decreased co-localization fluorescence of LC3 and lysosomes in the CBNPs-Cd combination group compared with the CBNPs-Cd single and control groups. No difference in LAMP1 protein expression was observed among the exposed groups. Adding 3 MA alleviated inflammatory responses, while applying the Baf-A1 inhibitor aggravated inflammation both in vitro and in vivo following CBNPs-Cd co-exposure. Factorial analysis showed no interaction between CBNPs and Cd in their effects on 16HBE cells. We demonstrated that co-exposure to CBNPs-Cd increases the synthesis of autophagosomes and regulates the acidic environment of lysosomes, thereby inhibiting autophagy-lysosome fusion and enhancing the inflammatory response in both 16HBE cells and mouse lung. These findings provide evidence for a comprehensive understanding of the interaction between CBNPs and Cd in mixed pollutants, as well as for the prevention and control of occupational exposure to these two chemicals.


Assuntos
Cádmio , Nanopartículas , Camundongos , Humanos , Animais , Cádmio/toxicidade , Fuligem/toxicidade , Autofagia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células Epiteliais , Lisossomos/metabolismo , Nanopartículas/toxicidade
7.
Chem Sci ; 14(47): 13860-13869, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075660

RESUMO

Accurately quantifying microRNA levels in vivo is of great importance for cancer staging and prognosis. However, the low abundance of microRNAs and interference from the complex tumor microenvironment usually limit the real-time quantification of microRNAs in vivo. Herein, for the first time, we develop an ultrasensitive microRNA (miR)-21 activated ratiometric nanoprobe for quantification of the miR-21 concentration in vivo without signal amplification as well as dynamic tracking of its distribution. The core-satellite nanoprobe by miR-21 triggered in situ self-assembly was built on nanogapped gold nanoparticles (AuNNP probe) and gold nanoparticles (AuNP probe). The AuNP probe generated a photoacoustic (PA) signal and ratiometric SERS signal with the variation of miR-21, whereas the AuNNP probe served as an internal standard, enabling ratiometric SERS imaging of miR-21. The absolute concentration of miR-21 in MCF-7 tumor-bearing mice was quantified to be 83.8 ± 24.6 pM via PA and ratiometric SERS imaging. Our strategy provides a powerful approach for the quantitative detection of microRNAs in vivo, providing a reference for the clinical treatment of cancer.

8.
Virol Sin ; 38(6): 860-867, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839551

RESUMO

Cutavirus (CuV) is a novel protoparvovirus possibly associated with diarrhea and cutaneous T-cell lymphomas. Patients with rheumatic disease are immunosuppressed and may be more vulnerable to pathogenic viruses. A descriptive study was conducted among hospitalized patients with rheumatic diseases and individuals undergoing medical health check-ups between June 2019 and June 2022 in Guangzhou, China. Stool samples of subjects were tested for CuV DNA. Demographic and fecal examination data of patients were obtained from electronic medical records. A total of 505 patients with rheumatic diseases and 244 individuals who underwent medical health check-ups were included in the study. Of the patients with rheumatic disease, 5.74% [95% confidence interval (CI): 4.03%-8.12%] were positive for CuV DNA, while no individual in the medical health check-up group was positive, indicating a close correlation between CuV and rheumatic disease. Men and patients with rheumatoid arthritis or ankylosing spondylitis, according to the disease classification, were more susceptible to being infected with CuV (P â€‹< â€‹0.01). After adjustments, being male remained the only significant factor, with an adjusted odd ratio (OR) of 4.4 (95% CI: 1.7-11.4, P â€‹= â€‹0.002). Phylogenetic analysis of the CuV VP2 sequences showed three diverse clades, one of which was segregated to be a single branching independent of previously known sequences, which is possible a new genotype.


Assuntos
Artrite Reumatoide , Doenças Reumáticas , Espondilite Anquilosante , Humanos , Masculino , Feminino , Filogenia , Espondilite Anquilosante/diagnóstico , DNA
9.
Environ Pollut ; 336: 122367, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573961

RESUMO

Benzo [a]pyrene (B [a]P) is a widespread environmental chemical pollutant that has been linked to the development of various diseases. However, the specific mechanism of action remains unclear. In this study, human bronchial epithelial 16HBE and BEAS-2B cells were exposed to B [a]P at 0-32 µM to assess the DNA-damaging effects. B [a]P exposure resulted in elevated expression of γ-H2AX, a marker of DNA damage. The m6A RNA methylation assay showed that B [a]P exposure increased the extent of m6A modification and the demethylase ALKBH5 played an integral role in this process. Moreover, the results of the comet assay and Western blot analysis showed an increase in m6A modification mediated by ALKBH5 that promoted DNA damage. Furthermore, the participation of a novel circular RNA, circ_0003552, was assessed by high-throughput sequencing under the condition of high m6A modification induced by B [a]P exposure. In subsequent functional studies, an interference/overexpression system was created to confirm that circ_0003552 participated in regulation of DNA damage. Mechanistically, circ_0003552 had an m6A binding site that could regulate its generation. This study is the first to report that B [a]P upregulated circ_0003552 through m6A modification, thereby promoting DNA damage. These findings revealed that epigenetics played a key role in environmental carcinogen-induced DNA damage, and the quantitative changes it brought might provide an early biomarker for future medical studies of genetic-related diseases and a new platform for investigations of the interaction between epigenetics and genetics.

10.
Front Microbiol ; 14: 1205134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396384

RESUMO

Purpose: The Tunisian stool-associated parvovirus [Tusavirus (TuV)] is a novel member of the genus Protoparvovirus, which may be linked to diarrhea. Herein, we investigated the prevalence of TuV in different populations and analyzed its genetic and bioinformatic characteristics. Methods: This study was conducted in a tertiary hospital in Guangzhou (China) from February 2018 to July 2022. Demographic and clinical information and stool samples were collected from individuals who visited the hospital. ProtScale, SwissModel, Datamonkey, and other tools were used to analyze and predict the physicochemical parameters, tertiary structure, selection pressure, and B-cell epitopes of capsid viral protein 2 of TuV (VP2-TuV). Results: A total of 3,837 participants were enrolled, among which two stool samples from patients with chronic illnesses were tested positive for TuV DNA. However, no positive sample was detected among patients with diarrhea. Two near-complete genome sequences were amplified. The genetic analysis revealed the presence of diversity among TuVs isolated from distinct host species. Bioinformatics analysis revealed that VP2-TuV exhibited hydrophilic properties and lacked transmembrane domains and signal peptides. The secondary structure of VP2-TuV was composed mainly of random coils and ß-strands. Selective-pressure analysis of the VP2 region suggested that TuV primarily underwent negative selection during evolution. Negatively selected codon sites coincided with residues comprising of B-cell epitopes, suggesting minimal changes in the immunogenicity of TuV over time. Conclusion: TuV was detected in patients with chronic diseases but not in patients with diarrhea. The putative roles of TuV in the pathogenicity of human diseases and zoonotic viruses must be determined by additional studies.

11.
Bioorg Med Chem ; 91: 117404, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429211

RESUMO

A series of novel substituted 4-anilinoquinazolines and their related compounds were designed and prepared by 3D modeling as potential inhibitors of VEGFR-2. Evaluation of VEGFR inhibitory activities suggested that compound I10 was a more potent (IC50 = 0.11 nM) VEGFR-2 inhibitor than most of the listed drugs. Kinase panel assays demonstrated that compound I10 was the selective VEGFR-2 inhibitor. The prediction of 3D modeling unveiled a unique binding mode of this lead compound to VEGFR-2. Compound I10 exhibited remarkable anti-angiogenesis and anti-proliferation in HUVEC at low nanomolar concentrations. PK studies indicated that the lead compound possessed adequate oral bioavailability in various species. In vivo subcutaneous tumor model demonstrated that oral administration of I10 demonstrated potent efficacy in inhibiting tumor growth and angiogenesis. All these results suggested compound I10 is a potential drug candidate for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Neoplasias/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/química , Proliferação de Células , Antineoplásicos/química , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular
12.
BMC Cancer ; 23(1): 598, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380957

RESUMO

BACKGROUND: Over past decades, epidemiological patterns of liver cancer (LC) have changed dramatically. The Global Burden of Disease (GBD) study provides an opportunity for tracking the progress in cancer control with its annual updated reports at national, regional and global level, which can facilitate the health decision-making and the allocation of health resources. Therefore, we aim to estimate the global, regional and national trends of death caused by liver cancer due to specific etiologies and attributable risks from 1990 to 2019. MATERIALS AND METHODS: Data was collected from the GBD study 2019. Estimated annual percentage changes (EAPC) were used to quantify the trends of age-standardized death rate (ASDR). We applied a linear regression for the calculation of estimated annual percentage change in ASDR. RESULTS: From 1990 to 2019, the ASDR of liver cancer decreased globally (EAPC = - 2.23, 95% confidence interval [CI]: - 2.61 to - 1.84). Meanwhile, declining trends were observed in both sexes, socio-demographic index (SDI) areas, and geographies, particularly East Asia (EAPC = - 4.98, 95% CI: - 5.73 to - 4.22). The ASDR for each of the four major etiologies fell globally, while liver cancer caused by hepatitis B had the largest drop (EPAC = - 3.46, 95% CI: - 4.01 to - 2.89). China has had dramatic decreases in death rates on a national scale, particularly when it comes to the hepatitis B etiology (EAPC = - 5.17, 95% CI: - 5.96 to - 4.37). However, certain nations, such as Armenia and Uzbekistan, saw a rise in liver cancer mortality. Controlling smoking, alcohol, and drug use contributed to a drop in LC-related mortality in the majority of socio-demographic index areas. Nevertheless, the excessive body mass index (BMI) was portrayed as the underlying cause for LC fatalities. CONCLUSION: From 1990 to 2019, there was a worldwide decrease in deaths caused by liver cancer and its underlying causes. However, rising tendencies have been observed in low-resource regions and countries. The trends in drug use- and high BMI-related death from liver cancer and its underlying etiologies were concerning. The findings indicated that efforts should be increased to prevent liver cancer deaths through improved etiology control and risk management.


Assuntos
Hepatite B , Neoplasias Hepáticas , Feminino , Masculino , Humanos , Carga Global da Doença , Neoplasias Hepáticas/epidemiologia , Armênia
13.
Nano Lett ; 23(9): 3929-3938, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129144

RESUMO

Manufacturing heteronanostructures with specific physicochemical characteristics and tightly controllable designs is very appealing. Herein, we reported NIR-II light-driven dual plasmonic (AuNR-SiO2-Cu7S4) antimicrobial nanomotors with an intended Janus configuration through the overgrowth of copper-rich Cu7S4 nanocrystals at only one high-curvature site of Au nanorods (Au NRs). These nanomotors were applied for photoacoustic imaging (PAI)-guided synergistic photothermal and photocatalytic treatment of bacterial infections. Both the photothermal performance and photocatalytic activity of the nanomotors are dramatically improved owing to the strong plasmon coupling between Au NRs and the Cu7S4 component and enhanced energy transfer. The motion behavior of nanomotors promotes transdermal penetration and enhances the matter-bacteria interaction. More importantly, the directional navigation and synergistic antimicrobial activity of the nanomotors could be synchronously driven by NIR-II light. The marriage of active motion and enhanced antibacterial activity resulted in the expected good antibacterial effects in an abscess infection mouse model.


Assuntos
Nanopartículas , Nanotubos , Animais , Camundongos , Dióxido de Silício , Fototerapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ouro/uso terapêutico , Ouro/química
14.
Antioxid Redox Signal ; 38(1-3): 115-136, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708118

RESUMO

Aims: Noise damage to auditory hair cells is associated with oxidative stress and mitochondrial dysfunction. This study aimed to investigate the possible effect of sestrin 2 (SESN2), an endogenous antioxidant protein, on noise-induced hearing loss (NIHL) and the underlying mechanisms. Results: We identified SESN2 as a protective factor against oxidative stress in NIHL through activation of Parkin-mediated mitophagy. Consistently, SESN2 expression was increased and mitophagy was induced during the early stage after a temporary threshold shift due to noise exposure or hydrogen peroxide(H2O2) stimulation; conversely, SESN2 deficiency blocked mitophagy and exacerbated acoustic trauma. Mechanistically, SESN2 interacted with Unc-51-like protein kinase 1(ULK1), promoting ULK1 protein-level stabilization by interfering with its proteasomal degradation. This stabilization is essential for mitophagy initiation, since restoring ULK1 expression in SESN2-silenced cells rescued mitophagy defects. Innovation and Conclusion: Our results provide novel insights regarding SESN2 as a therapeutic target against noise-induced cochlear injury, possibly through improved mitophagy. Antioxid. Redox Signal. 38, 115-136.


Assuntos
Perda Auditiva Provocada por Ruído , Mitofagia , Humanos , Sestrinas , Peróxido de Hidrogênio/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Neurosci Lett ; 793: 136990, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36455693

RESUMO

Cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) is a worldwide epidemic. Recent studies have shown that the degree of spiral ganglion neuron (SGN) loss is correlated with hearing loss after CMV infection. We aimed to better understand the pathological mechanisms of CMV-related SGN death and to search for intervention measures. We found that both apoptosis and pyroptosis are involved in CMV-induced SGN death, which may be caused by the simultaneous activation of the p53/JNK and NLRP3/caspase-1 signaling pathways, respectively. Moreover, considering that mixed lineage kinase family (MLK1/2/3) are host restriction factors against viral infection and upstream regulators of the p53/JNK and inflammatory (including NLRP3-caspase1) signaling pathways, we further demonstrated that the MLKs inhibitor URMC-099 exhibited a protective effect against CMV-induced SGN death and hearing loss. These results indicate that MLKs signaling may be a key regulator and promising novel target for preventing apoptosis and even pyroptosis during the CMV infection of SGN cells and for treating hearing loss.


Assuntos
Infecções por Citomegalovirus , Surdez , Perda Auditiva Neurossensorial , MAP Quinase Quinase Quinases , Muromegalovirus , Animais , Camundongos , Apoptose , Citomegalovirus , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Surdez/metabolismo , Surdez/patologia , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Neurônios , Proteína 3 que Contém Domínio de Pirina da Família NLR , Gânglio Espiral da Cóclea/patologia , Proteína Supressora de Tumor p53 , MAP Quinase Quinase Quinases/metabolismo
16.
Hum Vaccin Immunother ; 18(6): 2133912, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36269145

RESUMO

Elderly individuals with chronic illnesses are more prone to get influenza. We aimed to investigate the factors associated with influenza coverage and willingness in chronic disease patients aged ≥60 years in Longhua district, Shenzhen City of southern China. Data collected in October 2020 were used in this work. The immunization status of older persons with chronic conditions and their willingness to receive the vaccine were assessed. Multivariable logistic regression was employed to determine the respective independent factors related to vaccination coverage and willingness for influenza. Only 4.8% of 5045 people were immunized against influenza, whereas 92.7% of the individuals agreed to receive the vaccine. Individuals between the ages of 70 and 79 (adjusted OR [aOR] 1.47, P = .012), those with higher education levels (aOR 1.53, P = .005 for high school; aOR 2.44, P < .001 for college or above), those who use of a family doctor (aOR 2.91, P < .001), those who frequently have physical examinations once a year (aOR 2.52, P < .001), and those who have never smoked (aOR 1.62, P = .018) were positively associated with the influenza vaccination. Meanwhile, older age was adversely linked with influenza vaccination willingness (aOR 0.68 for 70-79 years, P = .003; aOR 0.55 for≥80 years, P = .025) in contrast to those aged 60-69. High willingness to get vaccinated was more frequent in people with a high school diploma (aOR 1.33, P = .037). In this work, we observed that the coverage is poor but the immunization desire is high regarding influenza vaccination. Interestingly, older age was associated with higher coverage and lower willingness. These suggest that raising immunization rates among older people with chronic conditions and strengthening health education for caregivers should be the primary concerns.


Assuntos
Vacinas contra Influenza , Influenza Humana , Idoso , Humanos , Idoso de 80 Anos ou mais , Influenza Humana/prevenção & controle , Vacinação , Cobertura Vacinal , China , Doença Crônica
17.
Int Immunopharmacol ; 113(Pt A): 109305, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244217

RESUMO

Cytomegalovirus (CMV) infection causes newborn deafness, and the death of the spiral ganglion neurons (SGNs) is crucial in determining the degree of CMV-related hearing loss. Therefore, understanding the psychopathology of CMV-related SGN loss is important for identifying targets and exploring treatment strategies. In this study, we found that pyroptosis and apoptosis, two inflammasome-related programmed cell death pathways, are involved in CMV-induced SGN death and are mainly regulated by activated caspase-1 and caspase-8. Moreover, suppressing inflammasome assembly by blocking apoptosis-associated speck-like protein containing a CARD (ASC) interaction inhibited the activation of both caspase-1 and caspase-8, rescued SGN death, and improved hearing loss in CMV-infected newborn mice. Therefore, we propose that ASC inflammasome might be a promising target for treating CMV-related SGN death and newborn hearing loss by inhibiting caspase-1 and caspase-8 activated pyroptosis and apoptosis.


Assuntos
Infecções por Citomegalovirus , Perda Auditiva , Animais , Camundongos , Caspase 1/metabolismo , Inflamassomos/metabolismo , Piroptose , Caspase 8/metabolismo , Apoptose/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
18.
Se Pu ; 40(7): 591-599, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35791597

RESUMO

This paper provides an annual review of capillary electrophoresis (CE) technology in 2021. A total of 291 research papers related to CE technology published in 2021 were retrieved from the ISI Web of Science using the keywords, "capillary electrophoresis-mass spectrometry" "capillary isoelectric focusing" "micellar electrokinetic chromatography", or "capillary electrophoresis" (not "capillary electrochromatography" "microchip" and "capillary monolithic column"). In addition, nine research papers related to CE technology in Chinese journals were reviewed: Chinese Journal of Chromatography and Chinese Journal of Analytical Chemistry. This review focused on seven papers published in Coordination Chemistry Reviews, Angewandte Chemie-International Edition, Nature Protocols, TrAC-Trends in Analytical Chemistry, and Signal Transduction and Targeted Therapy with impact factors (IFs) greater than 10.0, as well as 42 papers reported in Analytical Chemistry, Analytica Chimica Acta, Talanta, and Food Chemistry with IFs between 5.0 and 10.0. This review also provides a comprehensive overview of representative CE works in Journal of Chromatography A and Electrophoresis with IFs<5.0, as well as important Chinese journals, Chinese Journal of Chromatography and Chinese Journal of Analytical Chemistry. According to the IF, this paper introduces the representative work of CE-related papers to allow readers to quickly understand the important research progress of CE technology in the past year.


Assuntos
Eletrocromatografia Capilar , Alimentos , Focalização Isoelétrica , Micelas , Tecnologia
19.
Rev Med Virol ; 32(6): e2380, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35822660

RESUMO

Parechovirus A (PeV-A) belongs to the genus Parechovirus in the family Picornaviridae associated with gastroenteritis illness, particularly in children, but prior studies have produced ambiguous results. This study aimed to provide a systematic review of the PeV-A prevalence in paediatric patients with gastroenteritis and the association between PeV-A infection and the risk of gastroenteritis. A systematic search of the literature was conducted in Embase, PubMed, Scopus, and Web of Science, in combination with the reference lists of potentially relevant articles. A random effect-based model was applied to analyse data from included studies. The pooled odds ratio (OR) and 95% confidence interval (CI) were used for assessing the risk between PeV-A and gastroenteritis. A total of 41 studies assessing 21,850 cases and 1746 healthy controls were analysed. The overall prevalence of PeV-A among paediatric patients with gastroenteritis was 10.4% (95% CI: 7.9%-13.2%), while it was estimated at 8.1% (95% CI: 5.1%-11.7%) based on studies only investigating children without gastroenteritis. The pooled OR for all eight case-control studies was 1.079 (95% CI: 0.730-1.597), indicating there was no statistically significant association. PeV-A genotype 1 was the most frequent genotype of PeV-A infection in children with gastroenteritis. The PeV-A prevalence in cases of gastroenteritis is higher than that in children without gastroenteritis. However, the present meta-analysis did not indicate a statistically significant association between PeV-A infection and risk of gastroenteritis. Given the considerable heterogeneity and various sample sizes among the included studies, relevant investigations in the future should be carried out based on a large-scale population.


Assuntos
Gastroenterite , Parechovirus , Infecções por Picornaviridae , Humanos , Criança , Lactente , Parechovirus/genética , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/epidemiologia , Gastroenterite/epidemiologia , Genótipo , Filogenia
20.
Mol Immunol ; 149: 66-76, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35749835

RESUMO

Aminoglycoside antibiotic drugs induce hearing loss in children and adults every year; however, the pathological mechanisms remain unknown. Previous studies have shown that the accumulation of reactive oxygen species (ROS) and inflammation in the inner ear may be responsible for kanamycin (KM)-induced hair cell death and hearing loss. Nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) is a specific ROS sensor that initiates inflammasome assembly as well as activates caspase-1 and downstream inflammatory factors. Therefore, this study aimed to determine whether NLRP3 inflammasomes are involved in KM-related hearing loss in mice. Compared with the control (saline) group, increased levels of activated caspase-1, interleukin (IL)-1ß, IL-18, N-terminal fragment of gasdermin D (GSDMD-N), and NLRP3 were detected by immunofluorescence, western blot, and enzyme-linked immunosorbent assay (ELISA) in the KM-plus-furosemide (LASIX)-treated group. Moreover, we also found that the NLRP3 inhibitor oridonin (Ori) could significantly rescue KM-related hearing loss by inhibiting NLRP3-inflammasome activation and caspase-1/GSDMD-related hair cell pyroptosis. These findings demonstrate that apoptosis, as well as pyroptosis, may be involved in KM-related hearing loss and that the NLRP3/caspase-1/GSDMD pathway may be a new target for treating aminoglycoside-induced hearing loss.


Assuntos
Perda Auditiva , Piroptose , Animais , Caspase 1/metabolismo , Diterpenos do Tipo Caurano , Cabelo/metabolismo , Perda Auditiva/induzido quimicamente , Perda Auditiva/tratamento farmacológico , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Canamicina , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...